Superoxide anion generation by the cytochrome bc1 complex.
نویسندگان
چکیده
We have measured the rates of superoxide anion generation by cytochrome bc(1) complexes isolated from bovine heart and yeast mitochondria and by cytochrome bc(1) complexes from yeast mutants in which the midpoint potentials of the cytochrome b hemes and the Rieske iron-sulfur cluster were altered by mutations in those proteins. With all of the bc(1) complexes the rate of superoxide anion production was greatest in the absence of bc(1) inhibitor and ranged from 3% to 5% of the rate of cytochrome c reduction. Stigmatellin, an inhibitor that binds to the ubiquinol oxidation site in the bc(1) complex, eliminated superoxide anion formation, while myxothiazol, another inhibitor of ubiquinol oxidation, allowed superoxide anion formation at a low rate. Antimycin, an inhibitor that binds to the ubiquinone reduction site in the bc(1) complex, also allowed superoxide anion formation and at a slightly greater rate than myxothiazol. Changes in the midpoint potentials of the cytochrome b hemes had no significant effect on the rate of cytochrome c reduction and only a small effect on the rate of superoxide anion formation. A mutation in the Rieske iron-sulfur protein that lowers its midpoint potential from +285 to +220 mV caused the rate of superoxide anion to decline in parallel with a decline in cytochrome c reductase activity. These results indicate that superoxide anion is formed by similar mechanisms in mammalian and yeast bc(1) complexes. The results also show that changes in the midpoint potentials of the redox components that accept electrons during ubiquinol oxidation have only small effects on the formation of superoxide anion, except to the extent that they affect the activity of the enzyme.
منابع مشابه
Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles.
The mitochondrial cytochrome bc(1) complex (ubiquinol/cytochrome c oxidoreductase) is generally thought to generate superoxide anion that participates in cell signaling and contributes to cellular damage in aging and degenerative disease. However, the isolated, detergent-solubilized bc(1) complex does not generate measurable amounts of superoxide except when inhibited by antimycin. In addition,...
متن کاملReaction mechanism of superoxide generation during ubiquinol oxidation by the cytochrome bc1 complex.
In addition to its main functions of electron transfer and proton translocation, the cytochrome bc(1) complex (bc(1)) also catalyzes superoxide anion (O(2)(*)) generation upon oxidation of ubiquinol in the presence of molecular oxygen. The reaction mechanism of superoxide generation by bc(1) remains elusive. The maximum O(2)(*) generation activity is observed when the complex is inhibited by an...
متن کاملTraffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal.
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product...
متن کاملA semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production.
The cytochrome bc1 and related complexes are essential energy-conserving components of mitochondrial and bacterial electron transport chains. They orchestrate a complex sequence of electron and proton transfer reactions resulting in the oxidation of quinol, the reduction of a mobile electron carrier, and the translocation of protons across the membrane to store energy in an electrochemical prot...
متن کاملThe cytochrome bc1 complex: function in the context of structure.
The bc1 complexes are intrinsic membrane proteins that catalyze the oxidation of ubihydroquinone and the reduction of cytochrome c in mitochondrial respiratory chains and bacterial photosynthetic and respiratory chains. The bc1 complex operates through a Q-cycle mechanism that couples electron transfer to generation of the proton gradient that drives ATP synthesis. Genetic defects leading to mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of biochemistry and biophysics
دوره 419 2 شماره
صفحات -
تاریخ انتشار 2003